MOS Device Parameters ## I. Objective Familiarize yourself with HSPICE and basic MOSFET model parameter extraction. Do this by running basic simulations and experiments upon individual NMOS and PMOS devices. # II. Preparation Using HSPICE simulations, - 1. Generate the following plots on linear scales for both NMOS & PMOS devices with $|V_{DS}| = 5V$: - I_D vs. V_{GS} - $\sqrt{I_D}$ vs. V_{GS} - $\frac{dI_D}{dV_{GS}} = g_m \text{ vs. } V_{GS}$ - (g_m/I_D) vs. V_{GS} Based on these simulations, what do you consider to be the threshold voltages of these devices? What is the value of $(W/L)\mu C_{ox}$? How does this compare with the values reported in the simulator's dc operating point analysis? - 2. For both the NMOS and PMOS device, with $|V_{GS}|=5$ V constant, sweep V_{DS} . Plot I_D vs. V_{DS} and measure the slope of the curves when the transistors are in active mode. Estimate the model parameter λ for both the NMOS and PMOS device. - 3. By simulation, attempt to determine the small-signal gate-source capacitance C_{gs} of both the NMOS and PMOS transistors when in active mode with $|V_{GS}| = |V_{DS}| = 5 \text{ V}$. #### **HSPICE Simulation** Perform the preparation above using HSPICE and the 4007 device models provided on the course website. Summarize all of your calculated and simulated results in a table and comment on any differences. ## III. Experiment - 1. While keeping $|V_{DS}| = 5V$ constant, sweep V_{GS} to obtain a plot of I_D vs. V_{GS} , just as in the preparation. Based on these resuls, what do you consider to be the threshold voltages of these devices? What is the value of $(W/L)\mu C_{ox}$? - 2. Perform an experiment in the lab that will allow you to estimate the small signal gate-source capacitance C_{gs} of individual NMOS and PMOS transistors when in saturation with $|V_{GS}| = |V_{DS}| = 5 \text{ V}$. Show the TAs your tabulated results for both the NMOS and PMOS devices, comparing the valus of threshold voltage, $(W/L)\mu C_{ox}$, and C_{gs} obtained in simulation and experimentally.