Microelectronic Circuits Errata

Microelectronic Circuits, 8th Edition Errata

Feel free to report additional suspected errors in the comments below. Note, some may already be corrected in your version of the text, particularly if you have the eBook.

SectionPage No.Figure, Exercise,
Example, Problem,
Equation Reference
OriginalCorrected
1.4.823Exercise 1.11Ans. 120 mW; 15%Ans. 102 mW; 15%
Chapter 1, Problems52Problem 1.52… voltage gain vo/vs… voltage gain vL/vs
Chapter 1, Problems53Figure P1.62Right side (output) negative terminal is floatingRight side (output) negative terminal is connected to the left side (input) negative terminal, ground
2.1.363Figure E2.3Printing error: two overlapping dependent sources on the right, printed right on top of each otherEliminate one of the overlapping dependent sources. (Already corrected in the eBook.)
2.2.166VE 2.1… square wave with levels of 0 V and 1 V …… square wave with levels of 0 V and -1 V …
Chapter 2, Problems122Problem 2.34(c)If RL is varied in the range 100 Ω to 500 kΩ, …If RL is varied in the range 100 Ω to 500 Ω, …
Chapter 6, Problems 361Problem 6.51,
Fig. P6.51
eBook only: The wrong figure appears
7.4.1452Example 7.11The equation to solve for RS: RS = VS/RS = 5/0.5 = …RS = VS/ID = 5/0.5 = …
8.4.1530Bottom of page: … thus, we can use the source absorption theorem (Appendix C) …… thus, we can use the source absorption theorem (Appendix D) …
13.1.4945Exercise D13.4… of the op amp we analyzed in Chapter 9 (see Example 9.6).… of the op amp in Figs. 13.1 and 13.2.
13.1.4945Exercise D13.4Recall from the results of Example 9.6 …Assume …
13.2.3960Top of the page: … given by Eq. (8.97),… given by Eq. (8.96),
13.2.4961The start of section: From Section 10.5, we know …From Section 10.4, we know …
13.3.2975Example 13.3Thus Ro9 can be found using Eq. (8.70),Thus, Ro9 can be found using Eq. (8.68),

Appendix L – Answers to Selected Problems & Dropdown Answers in the eBook

These errors also appear in some eBook in the “hidden” (dropdown) answers.

Problem No.Original Corrected
1.3(b)R = 50 k, P = 20 mWR = 50 Ω, P = 20 mW
1.3(c)I = 100 mA, R = 10 kI = 100 mA, R = 10 Ω
1.192 V4.25 V
1.23(b)(717 + j450) Ω(717 – j450) Ω
1.30(a)2%; 9%0.2%; 9%
1.390; 101; 1101; 10000; 1111110; 101; 1101; 100000; 111111
1.594.95 A/A; 13.9 dB; 4.9 V/V; 13.8 dB; 24.3 W/W; 27.7 dB4.95 A/A; 13.9 dB; 4.5 V/V; 13.1 dB; 22.3 W/W; 13.5 dB
2.34(b)693 kΩ693 Ω
2.71 & 2.73The answer for 2.71 appears under 2.73No answer provided for 2.73
Answer for 2.71: 2vID + 0.01(3 – 6x)/(1 + xx2)
2.88C2 = 15.9 pFC2 = 7.95 pF
7.29eBook only, Dropdown menu for the Answer:
12 kΩ; 10 Ωm; 0.75 V
12 kΩ; 10 μm; 0.75 V

Appendix G – Comparison of the MOSFET and BJT

  • Table G.3, page G-5, section on “Transconductance”: should be “gm = ” instead of “gm u“.
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x